Purpose – Hybrid methods, wherefore numerical and experimental data are used to calculate a critical parameter, have been used for several years with great success in Experimental Mechanics and, in particular, in fracture mechanics. The purpose of this paper is to report on the comparison of the strain field from numerical modelling forecasts against the experimental data obtained with the digital image correlation method under Mode II loading in fatigue testing. The numerical dual boundary element method has been established in the past as a very reliable method near singular regions where stresses tend to grow abruptly. The results obtained from the strain data near the crack tip were used in Williams expansion and agree fairly well with both the numerical results and the analytical solution proposed for pure Mode II testing. Design/methodology/approach – The work presented in this note is experimental. The proposed methodology is of an hybrid experimental/numerical nature in that a numerical stress intensity factor calculation hinges upon a stress field obtained with an image method. Findings – The obtained results are an important step towards the development of a practical tool for crack behaviour prediction in fatigue dominated events. Research limitations/implications – The results also stress the necessity of improving the experimental techniques to a point where the methods can be applied in real-life solicitations outside of laboratory premises. Originality/value – Although several research teams around the globe are presently working in this field, the present research topic is original and the proposed methodology has been presented initially by the research team years ago.
Read full abstract