Adaptive visual processing is enabled through the dynamic interplay between top-down and bottom-up (feedback/feedforward) information exchange, presumably propagated through brain oscillations. Here, we causally tested for the oscillatory mechanisms governing this interaction in the human visual system. Using concurrent transcranial magnetic stimulation-electroencephalography (TMS-EEG), we emulated top-down signals by a single TMS pulse over the frontal eye field (right FEF), while manipulating the strength of sensory input through the presentation of moving concentric gratings (compared to a control-TMS site). FEF-TMS without sensory input led to a top-down modulated occipital phase realignment, alongside higher fronto-occipital phase connectivity, in the alpha/beta band. Sensory input in the absence of FEF-TMS increased occipital gamma activity. Crucially, testing the interaction between top-down and bottom-up processes (FEF-TMS during sensory input) revealed an increased nesting of the bottom-up gamma activity in the alpha/beta-band cycles. This establishes a causal link between phase-to-power coupling and top-down modulation of feedforward signals, providing novel mechanistic insights into how attention interacts with sensory input at the neural level, shaping rhythmic sampling.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
56 Articles
Published in last 50 years
Articles published on Bottom-up Interactions
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
54 Search results
Sort by Recency