We prove the following formula for the ground state energy density of a dilute Bose gas with density ρ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\rho $$\\end{document} in 2 dimensions in the thermodynamic limit e2D(ρ)=4πρ2Y(1-Y|logY|+(2Γ+12+log(π))Y)+o(ρ2Y2),\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} e^{\ ext {2D}}(\\rho ) = 4\\pi \\rho ^2 Y\\Big (1 - Y \\vert \\log Y \\vert + \\Big ( 2\\Gamma + \\frac{1}{2} + \\log (\\pi ) \\Big ) Y \\Big ) + o(\\rho ^2 Y^{2}), \\end{aligned}$$\\end{document}as ρa2→0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\rho a^2 \\rightarrow 0$$\\end{document}. Here Y=|log(ρa2)|-1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$Y= |\\log (\\rho a^2)|^{-1}$$\\end{document} and a is the scattering length of the two-body potential. This result in 2 dimensions corresponds to the famous Lee–Huang–Yang formula in 3 dimensions. The proof is valid for essentially all positive potentials with finite scattering length, in particular, it covers the crucial case of the hard core potential.
Read full abstract