Microvascular changes are considered key factors in the process of intervertebral disk degeneration (IDD). Microvascular invasion and growth into the nucleus pulposus (NP) and cartilaginous endplates are unfavorable factors that trigger IDD. In contrast, the rich distribution of microvessels in the bony endplates and outer layers of the annulus fibrosus is an important safeguard for the nutrient supply and metabolism of the intervertebral disk (IVD). In particular, the adequate supply of microvessels in the bony endplates is the main source of the nutritional supply for the entire IVD. Microvessels can affect the progression of IDD through a variety of pathways. Many studies have explored the effects of microvessel alterations in the NP, annulus fibrosus, cartilaginous endplates, and bony endplates on the local microenvironment through inflammation, apoptosis, and senescence. Studies also elucidated the important roles of microvessel alterations in the process of IDD, as well as conducted in-depth explorations of cytokines and biologics that can inhibit or promote the ingrowth of microvessels. Therefore, the present manuscript reviews the published literature on the effects of microvascular changes on IVD to summarize the roles of microvessels in IVD and elaborate on the mechanisms of action that promote or inhibit de novo microvessel formation in IVD.
Read full abstract