PurposeOral drug delivery is the Holy Grail in the field of drug delivery. However, poor bioavailability limits the oral intake of macromolecular drugs. Oral devices may overcome this limitation, but a knowledge gap exists on the device-tissue interaction. This study focuses on needle insertion into the human stomach experimentally and numerically. This will guide early stages of device development. MethodsNeedle insertions were done into excised human gastric tissue with sharp and blunt needles at velocities of 0.0001 and 0.1 m/s. Parameters for constitutive models were determined from tensile visco-hyperelastic biomechanical tests. The computational setup modeled four different needle shape indentations at five velocities from 0.0001 to 5 m/s. ResultsFrom experiments, peak forces at 0.1 and 0.0001 m/s were 0.995 ± 0.296 N and 1.281 ± 0.670 N (blunt needle) and 0.325 ± 0.235 N and 0.362 ± 0.119 N (sharp needle). The needle geometry significantly influenced peak forces (p < 0.05). A Yeoh-Prony series combination was fitted to the tensile visco-hyperelastic biomechanical data and used for the numerical model with excellent fit (R2 = 0.973). Both needle geometry and insertion velocity influenced the stress contour and displacement magnitudes as well as energy curves. ConclusionThis study contributes to a better understanding of needle insertion into the stomach wall. The numerical model demonstrated agreement with experimental data providing a good approach to early device iterations. Findings in this study showed that insertion velocity and needle shape affect tissue mechanical outcomes.
Read full abstract