Inflammation and matrix degradation are the hallmarks of high-risk atherosclerosis that leads to myocardial infarction and stroke. Toll-like receptors (TLRs), key players in innate immunity, are upregulated in atherosclerotic lesions, but their functional role in human atherosclerosis is unknown. We explored the effects of blocking TLR-2, TLR-4, and myeloid differentiation primary response gene 88 (MyD88), a signaling adaptor shared by most TLRs and interleukin-1 receptor (IL-1R), in an in vitro model of human atherosclerosis. Carotid endarterectomies were obtained from patients with symptomatic carotid disease. Cells were isolated via enzymatic tissue dissociation and cultured in the presence or absence of TLR signaling blockers. A dominant-negative form of MyD88 (MyD88(DN)) decreased the production of monocyte chemotactic protein-1/CCL2 (P=0.000), IL-8/CXCL8 (P=0.006), IL-6 (P=0.002), matrix metalloproteinase-1 (MMP-1; P=0.002), and MMP-3 (P=0.000), as well as nuclear factor-kappaB activation (P<0.05) in atheroma cell cultures. IL-1R antagonist, TLR-4 blocking antibodies, or overexpression of a dominant-negative form of the TLR-4 signaling adaptor TRIF-related adaptor molecule reduced nuclear factor-kappaB activity but did not have a broad impact on the production of the mediators studied. In contrast, TLR-2 neutralizing antibodies inhibited nuclear factor-kappaB activation (P<0.05) and significantly reduced monocyte chemotactic protein-1/CCL2 (P=0.000), IL-8/CXCL8 (P=0.009), IL-6 (P=0.000), and MMP-1 (P=0.000), MMP-2 (P=0.004), MMP-3 (P=0.000), and MMP-9 (P=0.006) production. Our data indicate that TLR-2 signaling through MyD88 plays a predominant role in inflammation and matrix degradation in human atherosclerosis. TLR-2 blockade may represent a therapeutic strategy for atherosclerosis and its complications.
Read full abstract