In airborne passive bistatic radar (PBR), the reference channel toward the opportunity illuminator is applied to receive the direct-path signal as the reference signal. In the actual scenario, the reference signal is contaminated by the multipath signals easily. Unlike the multipath signal in traditional ground PBR system, the multipath signal in the airborne PBR owns not only the time delay but also the Doppler frequency. The contaminated reference signal can cause the spatial-temporal clutter spectrum to expand and the false targets to appear. The performance of target detection is impacted severely. However, the existing blind equalization algorithm is unavailable for the contaminated reference signal in airborne PBR. In this paper, the modified blind equalization algorithm is proposed to suppress the needless multipath signal and restore the pure reference signal. Aiming at the Doppler frequency of multipath signal, the high-order moment information and the cyclostationarity of source signal are exploited to construct the new cost function for the phase constraint, and the complex value back propagation (BP) neural network is exploited to solve the constraint optimization problem for the better convergence. In final, the simulation experiments are conducted to prove the feasibility and superiority of proposed algorithm.
Read full abstract