The Arabidopsis lesion initiation 1 (len1) mutant develops lesions on leaves without pathogen attack. The len1 plants display lesion formation as they grow under short-day conditions (SD), but not under long-day conditions (LD). This study was conducted to examine how lesion formation, viz., cell death, in len1 plants occurs under SD. I present genetic and physiological data to show that tetrapyrrole metobolism is necessary for lesion formation in len1 plants. Lesion formation was suppressed in the len1lin2 double mutant under SD. lesion initiation 2 (lin2) is another lesion mimic mutant with a defect in tetrapyrrole biosynthesis. Suppression of lesion formation in len1 plants was also observed when they were crossed with the mutants that had defects in other steps in tetrapyrrole metabolism. Suppression was correlated with reduced chlorophyll (Chl) levels in the double mutants. Furthermore, I found that dark-to-light transition caused a bleached phenotype in len1 plants, as in the case of antisense ACD1 (acd, accelerated cell death) plants. ACD1 encodes pheophorbide a oxygenase (PaO), which is involved in Chl catabolism in Arabidopsis. These results suggest that tetrapyrrole metabolism, especially Chl breakdown, might be involved in lesion formation in len1 plants.
Read full abstract