This study was conducted to investigate the potential effects of active immunization against recombinant-derived goose inhibin-α (INH-α), anti-Müllerian hormone (AMH), and prolactin (PRL) fusion protein on broodiness onset and egg production in geese. The purified fusion proteins (INH-α, AMH, and PRL) were prepared using a prokaryotic expression system. Female Zhedong geese (10 mo old) were randomly assigned to one of 4 treatments and raised in separate pens. The geese were actively immunized with the recombinant goose INH-α, AMH, or PRL, respectively, and phosphate-buffered saline as control. The results showed the corresponding antibodies were produced when the geese were immune INH-α, AMH-, and PRL-recombinant proteins. The significantly higher luteinizing hormone contents were observed in the INH-α, AMH, and PRL recombinant protein-immunized geese, while the lower AMH hormone content only in PRL-immunized birds. AMH recombinant protein immunized geese had more large yellow follicles of ovary, while the INHα-treated birds with more other follicles compared with control geese. In addition, the geese receiving INH-α recombinant protein, the broodiness onset was about 6 d, which significantly shorter than did PBS immunization (16 d). The INHα- and PRL-immunization also resulted in 12.5 and 8.5 d shorter broody duration intervals compared to the control birds. Moreover, the lower new broodiness rate was observed in three recombinant proteins treated birds. Finally, the PRL recombinant protein-immunization resulted in an average increase of 1.34 eggs during a 40-d observation. Collectively, the data demonstrated that active immunization against recombinant proteins INH-α or AMH could promote LH hormone secretion, regulate follicle development and decrease the broodiness rate. Also, active immunization with a recombinant-derived goose PRL protein might improve egg laying performance.
Read full abstract