Bipolar DC distribution systems rely on various power sources like photovoltaics and distributed energy storage, each with its unique voltage characteristics. To accommodate these fluctuations, interface converters must adjust over a wide voltage range. The bipolar non-isolated DC-DC converter emerges as a promising solution due to its versatile modulation capabilities, reduced switch voltage stress, and cost-effectiveness. This article explores how wide voltage range regulation is achieved in bipolar DC-DC converters interfacing with bipolar DC power grids. It delves into the operational strategies and modulation techniques employed, ensuring stable output despite varying input voltages. Design considerations and challenges associated with implementing such converters are also discussed. An experimental platform was constructed to validate the proposed methodology. Through rigorous testing and analysis, the effectiveness of the topology's operation mode was confirmed. Real-world data from the experimental setup provided insights into the converter's performance under different operating conditions, supporting its applicability for bipolar DC distribution systems. In summary, this article provides a comprehensive examination of wide voltage range regulation in bipolar DC-DC converters, highlighting their potential to enhance efficiency and reliability in bipolar DC power grids. Through theoretical discussions and practical validation, it contributes to the advancement and adoption of these converters in modern energy systems.
Read full abstract