Metallic biomaterials, including traditional bioinert materials (such as stainless steel, cobalt-chromium alloys, pure titanium, and titanium alloys), novel biodegradable metals (such as pure magnesium and magnesium alloys, pure zinc and zinc alloys, and pure iron and iron alloys), and biomedical metallic glasses, have been widely used and studied as various biomedical implants and devices. Many scientists and researchers have investigated their superior biomechanical properties, corrosion behavior, and biocompatibility. However, their surface characteristics are of extreme importance due to continuing interactions between the surface/interface of an implanted metallic biomaterial and the surrounding physiological environment. Surface morphologies on these metallic biomaterials can modulate their in vitro and in vivo biological responses. In this review, we have summarized and investigated the effect of various surface morphologies on the corrosion behavior, cellular response, antibacterial activity, and osteogenesis of biomedical metallic materials. In addition, future research directions and challenges of surface morphologies on biomedical metallic materials have been elaborated. This review can lay a theoretical and practical foundation for further research and development on biomedical metallic materials.
Read full abstract