Transgenic plants are promising factories for manufacturing pharmaceutical small molecules or proteins safe for human consumption. Eukaryotic plant cells can synthesize proteins with precise posttranslational modifications, but microbes cannot. Conventional transformation methods (e.g., electroporation, Agrobacterium‐mediated transformation, and biolistic particle delivery) often suffer from inefficient transformation, damage to plant tissues and cells, or applicability to a narrow range of plant species. Notably, the cell wall poses a physical barrier that obstructs effective delivery of nucleic acids to plant cells. Nanoparticles (NPs) are emerging carriers of nucleic acids to plants because they are sufficiently small to diffuse through the cell wall, enter plant cells without the aid of external forces, and inflict limited damage to the plant cells in a broad variety of plants. Herein, three areas of the phytonanotechnology field that merit comprehensive investigations are outlined, namely, the design considerations of NPs for gene delivery to plant cells, homing of NPs to specific organelles (e.g., nucleus and chloroplast), and transformation of plant suspension cells. This perspective concludes with recent insights into scale‐up production of therapeutics by using bioreactors. NPs are poised to catalyze the transformation of plant cells for producing therapeutics in bioreactors at reduced costs, high purity, and improved scale.
Read full abstract