Antimicrobial resistance in Gram-negative bacteria (GNB) is a growing global health concern, particularly in hospital environments, where cockroaches act as vectors for resistant strains. This study aimed to analyze antimicrobial resistance and biofilm formation in GNB isolated from cockroaches collected in the hospital environment. Cockroaches were collected, and bacterial isolation was performed from their gut contents and external surfaces. GNB strains were tested for antibiotic susceptibility using the disk diffusion method and examined for Extended-spectrum β-lactamases (ESBLs) and carbapenemases production. Molecular characterization of ESBLs and carbapenemases in GNB involved PCR amplification of antibiotic resistance genes, while biofilm formation was studied using a microplate assay. Seventy-five cockroaches were collected from which 165 GNB were isolated. The prevalence of ESBL-producing and carbapenemase-producing GNB was 6.7 and 1.8%, respectively. The predominant ESBL gene was blaCTX-M-28, while blaNDM-1 was the only carbapenemase gene detected. The qnrS1 gene was found in one NDM-1-producing Klebsiella pneumoniae and three ESBL-producing Escherichia coli. The qacΔE1 gene was detected in an NDM-1-producing Citrobacter freundii and a CTX-M-28-producing E. coli, whereas one NDM-1-producing Enterobacter cloacae carried both qacΔE1 and acrA genes. Strains harboring qacΔE1 and/or acrA genes exhibited biofilm-forming capabilities, with biofilm formation observed in 81.81% of ESBL-producing isolates and 100% of carbapenemase-producing isolates. The study underscores the role of cockroaches in carrying and disseminating ESBL- and carbapenemase-producing GNB in hospital settings. The coexistence of disinfectant resistance genes and antibiotic resistance suggests co-selection mechanisms, while biofilm formation enhances bacterial survival. These findings underline the urgent need for infection control strategies.
Read full abstract