The current study explores biodegradable packaging materials that have high food quality assurance, as food deterioration is mostly caused by UV degradation and oxidation, which can result in bad flavor and nutrition shortages. Thus, new multifunctional zinc oxide nanoparticles/tannic acid (ZnO@TA) with antioxidant and antibacterial activities were incorporated into polyvinyl alcohol/chitosan (PVA/CH) composite films with different ratios (1%, 3%, and 5% based on the total dry weight of the film) via a solution blending method in a neutral aqueous solution. Additionally, ZnO nanoparticles have unique antibacterial mechanisms through the generation of excessive reactive oxygen species (ROS) that may lead to intensify pathogen resistance to conventional antibacterial agents. Thus, minimizing the negative effects caused by excessive levels of ROS may be possible by developing unique, multifunctional ZnO nanoparticles with antioxidant potential via coordination bond between tannic acid and ZnO nanoparticles (ZnO@TA). ZnO@TA nanoparticles were examined using Fourier-transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The effect of the incorporation of ZnO@TA nanoparticles on the barrier, mechanical, thermal, antioxidant, antimicrobial, and UV blocking characteristics of chitosan/polyvinyl alcohol (ZnO@TA@CH/PVA) films was investigated. The lowest water vapor and oxygen permeability and the maximum antioxidant capacity% are 31.98 ± 1.68 g mm/m2 kPa day, 0.144 ± 5.03 × 10–2 c.c/m2.day, and 69.35 ± 1.6%, respectively, which are related to ZnO@TA(50)@CH/PVA. Furthermore, ZnO@TA(50)@CH/PVA film exhibits the maximum UV shielding capacity of UVB (99.994). ZnO@TA(50) @PVA/CH films displayed better tensile strength and Young`s modulus of 48.72 ± 0.23 MPa and 2163.46 ± 61.4 MPa, respectively, than the other film formulations. However, elongation % at break exhibited the most reduced value of 19.62 ± 2.3%. ZnO@TA@CH/PVA film exhibits the largest inhibition zones of 11 ± 1.0, 12.3 ± 0.57, and 13.6 ± 0.57 mm against Staphylococcus aureus, Aspergillus flavus, and Candida albicans, respectively. In accordance with these results, ZnO@TA@CH/PVA films could be utilized for food preservation for the long-term.
Read full abstract