Obesity has attracted great concern because of its undesirable effects on our life quality. Bacterial cellulose (BC) is a biological macromolecule that can improve gut homeostasis and lipid metabolism. However, its potential role in preventing obesity and associated mechanisms is still poorly understood. Herein, a supplement of BC was used to fully evaluate how it prevents obesity based on physio-biochemical and gut microbial analyses. Results showed that BC consumption helped decrease body and liver weight, and fat accumulation in kidney and epididymis. Correspondingly, glucose concentrations, total triglycerides, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol were reversed to the control levels. Consuming BC also improved liver fat metabolism and intestinal function, and alleviated ileum and epididymis inflammation. High-throughput sequencing suggested that a high-fat diet significantly decreased gut microbiota diversity, which could be reversed by consuming BC. A decreased Firmicutes and Proteobacteria and an increased Bacteroidetes following BC consumption were observed. The OTU-based analysis identified that Lachnospiraceae, Desulfovibrio, Lachnoclostridium, Blautia, Anaerotruncus, Bacteroides, Faecalibaculum, Bacteroidales S24–7 group, Prevotellaceae UCG-001 group, and Alloprevotella might be involved in obesity development or prevention. Our data suggest that BC is a good insoluble dietary fiber to prevent obesity via regulating lipid metabolism and gut microbiota.
Read full abstract