The greenhouse gas (GHG) emission mandate on jet fuel requires a gradual reduction in the fuel’s GHG emissions, up to 50%, by 2050. For this reason, the demand for bio-jet fuel blended with conventional petroleum-derived jet fuel will increase. In order to meet the quality requirement of blended fuels (ASTM D7566), modeling that can predict the correlation between properties is required. Our aim was to predict the low-temperature properties using the distillation profile results obtained from Simulated Distillation (SIMDIS) according to the carbon number and chemical compositions of bio-jet fuel through correlation and regression analysis. We used hydroprocessed ester and fatty acid (HEFA) bio-jet fuel and hydrocarbon reagents that included C8, C10, and C12 carbons and five main families of hydrocarbons for blended jet fuel. This study shows an overall trend for each component, indicating that the distilled volume fraction is more affected than the carbon number. In the case of the freezing point, by composition, n-paraffin and naphthene have regression coefficients of more than 0.85 for the 50% and 60% recovery temperatures, respectively. In terms of carbon number, the C8 sample has a significant regression coefficient for the 40% recovery temperature, and C10 has a significant regression coefficient for the initial boiling point (IBP) and 10% recovery temperature. In the case of kinematic viscosity, by composition, the regression coefficient is significant for the 20% to 40% recovery temperatures. For naphthene, the kinematic viscosity exhibited no relationship with carbon number. This information can be utilized to determine the blended ratio of bio-jet fuel and conventional jet fuel in newly certified or commercial applications.
Read full abstract