Rare earth elements (REEs) have recently received significant attention due to their irreplaceable industrial application for the number of crucial advanced technologies in production of permanent magnets, batteries, luminescence lamps, lasers and other electronic and electrical goods. These technologies have been strongly affecting present consumption of REEs as well as looking for alternative sources, that would guarantee their sufficient supply for the future demand. This study investigates one of the possible and widely employed techniques for the efficient and at the same time, environmentally friendly recovery of REEs by adsorption using bio-based adsorbents. Overall, three bio-sorbents with different composition (residual biomass originated from agriculture and bio-refineries) were examined to study removal efficiency of the 7 most commonly used REEs in mixed aqueous solution. Batch adsorption experiments were carried out at the room temperature, varying the pH value (pH=1,54; 4,24) and different initial concentration of REEs to determine optimum condition for their recovery. Results revealed that removal efficiency for most of the REEs was much higher at pH=4,24 and reached 70-100% for the minimal concentrations and 30-40 % at maximal initial concentrations respectively. Adsorbent containing residual biomass and chitosan showed to be the most effective bio-sorbent for recovery of most of the REEs. In order to describe and fit the obtained data Langmuir and Freundlich isotherms models were employed.
Read full abstract