A new class of symmetric, end-off, N-methyl piperazine armed binucleating ligands 2,6-bis(4-methyl piperazin-1-yl-methyl)-4-acetyl phenol (HL 1) and 2,6-bis[(4-methyl piperazin-1-yl-methyl)]-(4-methylcarboxy) phenol (HL 2) were synthesized by the Mannich reaction. Their mononuclear and binuclear Cu(II), Ni(II) and Zn(II) complexes have been synthesized. These complexes were characterized by elemental analysis, infra-red and electronic spectral analysis. In the electronic spectra, the lower electron withdrawing nature of the C(O)CH 3 p-substituent (HL 1) compared with the C(O)OCH 3 p-substituent (HL 2) of the phenolic ring causes a red shift in the LMCT-charge transfer band. The mononuclear Cu(II) complexes 1 and 7 have a magnetic moment value close to the spin only value with four hyperfine EPR signals. The binuclear Cu(II) complexes 4 and 10 illustrate an antiferromagnetic interaction ( μ eff 1.56 and 1.55 BM) at 298 K with a broad EPR signal. A variable temperature magnetic moment study of the binuclear copper(II) complexes shows that the extent of antiferromagnetic coupling increases in the order: CHO [K. Shanmuga Bharathi, A. Kalilur Rahiman, K. Rajesh, S. Sreedaran, P.G. Aravindan, D. Velmurugan, V. Narayanan, Polyhedron 25 (2006) 2859] < C(O)CH 3 < C(O)OCH 3 (−2 J values 134 [Shanmuga Bharathi et al., mentioned above], 149 and 158 cm −1, respectively). The mononuclear Ni(II) complexes 2 and 8 are square planar and diamagnetic. The six coordinated binuclear Ni(II) complexes 5 and 11 show a magnetic moment value of 2.96 and 2.95 BM, respectively. Electrochemical studies of the complexes reveal that all the mononuclear complexes show a single irreversible one-electron transfer reduction wave and the binuclear complexes show two irreversible one-electron transfer reduction waves in the cathodic region. There is an anodic shift in the reduction of the metal centres when the electron withdrawing nature of the p-substituent of the phenolic ring increases. The catecholase activity of the mono and binuclear copper(II) complexes, using pyrocatechol as a model substrate, and the hydrolysis of 4-nitrophenyl phosphate using the mono and binuclear copper(II), nickel(II) and zinc(II) complexes as catalysts showed that the binuclear complexes have higher rate constant values than those of the corresponding mononuclear complexes. A comparison of the spectral, electrochemical and magnetic behaviour of the complexes derived from the ligands is discussed on the basis of the substituent at the para position of the phenolic ring.
Read full abstract