Binocular depth discrimination in the near distance range (< 2 m) improves with stimulus duration. However, whether the same response-pattern holds in the intermediate distance range (approximately 2-25 m) remains unknown because the spatial coding mechanisms are thought to be different. We used the two-interval forced choice procedure to measure absolute depth discrimination of paired asynchronous targets (3, 6, or 16 arc min). The paired targets (0.2 degrees) were located over a distance and height range, respectively, of 4.5 to 7.0m and 0.15 to 0.7 m. Experiment 1 estimated duration thresholds for binocular depth discrimination at varying target durations (40-1610 ms), in the presence of a 2 × 6 array of parallel texture-elements spanning 1.5 × 5.83 m on the floor. The texture-elements provided a visible background in the light-tight room (9 × 3 m). Experiment 2 used a similar setup to control for viewing conditions: binocular versus monocular and with versus without texture background. Experiment 3 compared binocular depth discrimination between brief (40, 80, and 125 ms) and continuous texture background presentation. Stimulus duration threshold for depth discrimination decreased with increasing disparity in experiment 1. Experiment 2 revealed depth discrimination performance with texture background was near chance level with monocular viewing. Performance with binocular viewing degraded without texture background. Experiment 3 showed continuous texture background presentation enhances binocular depth discrimination. Absolute depth discrimination improves with target duration, binocular viewing, and texture background. Performance further improved with longer background duration underscoring the role of ground surface representation in spatial coding.
Read full abstract