Ovarian cancer, a malignant tumor that poses a significant threat to women's health, has seen a rise in incidence, prompting the urgent need for more effective treatment. This study primarily aimed to explore the potential of bovine collagen peptides in inhibiting ovarian cancer. The investigation in this study began with the identification of 268 peptide sequences through LC-MS/MS, followed by a screening process using molecular docking techniques to identify potential peptides capable of binding to EGFR. Subsequently, a series of experiments were performed, demonstrating the inhibitory effects of the peptide GPAGADGDRGEAGPAGPAGPAGPR on the proliferation of ovarian cancer cells. Transcriptomic analysis further revealed that this peptide can regulate cholesterol metabolism in ovarian cancer cells. Finally, a combination of time-resolved fluorescence resonance energy transfer, isothermal titration calorimetry, molecular docking, and molecular dynamics simulations were utilized to validate the ability of this peptide to bind to the epidermal growth factor receptor (EGFR) and impede the binding of epidermal growth factor (EGF) and EGFR.
Read full abstract