Tetrahydrofuran (THF) is an aprotic solvent with multiple applications in diverse areas of chemical, petrochemical, and pharmaceutical industries with an important impact in chemical waste liquid with other solvents. In this work, 51 available VLE data, for isothermal binary mixtures of THF(1) + Benzene(2) and THF(1) + Cyclohexane(2) at 303.15 and 333.15 K, respectively, and isobaric THF(1) + Methanol(2) at 103 kPa and THF(1) + Ethanol(2) at 100 kPa were used in the development of the activity coefficient models. The quality of experimental data was checked using the Herington test. VLE binary data was correlated with models Wilson, NRTL UNIQUAC, and UNIFAC to obtain binary parameters and activity coefficients. The best thermodynamic consistency when conducting the Herington test for the VLE data was found for the THF(1) +Cyclohexane(2) isothermal system and THF(1) + Ethanol(2) isobaric system. The UNIQUAC model for isothermal systems THF(1) + Benzene(2) and THF(1) + Cyclohexane(2), the NRTL model for the isobaric system THF(1) + Methanol(2), and the UNIQUAC model for THF(1) + Ethanol(2) perform better than the other models.
Read full abstract