This work describes the characterization of an immunoreactive form of bile salt-dependent lipase (BSDL) expressed by the human pancreatic tumoral Mia PaCa-2 cell line. This BSDL-related protein, which has an Mr of 70 kDa, is enzymatically active and poorly secreted. Furthermore, a protein with the same electrophoretic migration can also be immunoprecipitated with polyclonal antibodies specific for the human pancreatic BSDL after in vitro translation of RNA isolated from Mia PaCa-2 cells. These data indicated that this BSDL-related protein might be poorly, or not, glycosylated. Reverse transcription and amplification of RNA extracted from Mia PaCa-2 cells using primers able to specifically amplify the full-length mRNA of the human BSDL resulted in a detectable 1.8-kb cDNA product, shorter than that of BSDL (2.2 kb). The sequence of this transcript corresponds to the mRNA sequence that codes for the mature human pancreatic BSDL. However, a deletion of 330 bp is located within the 3′-domain of this cDNA. Therefore data allowed us to conclude that the 70-kDa BSDL-related protein is a 612 amino acid length protein and represents a truncated form of BSDL. The deletion of 110 amino acids occurs in the C-terminal region of the protein, which encompasses 6 tandemly repeated sequences instead of the 16 normally present in the sequence of BSDL. Because feto-acinar pancreatic protein (FAPP), which is the oncofetal counterpart of BSDL, is a C-terminally truncated isoform of BSDL, it is suggested that the 70-kDa BSDL-related protein expressed in MiaPaCa-2 cells could be representative of the protein moiety of FAPP.
Read full abstract