Mid-infrared (IR) nonlinear optical (NLO) materials have generated extensive research interest because of their crucial role in laser technology applications. Here, we report the synthesis of a novel cadmium germanate NLO crystal, K4Cd3Ge4O13, using spontaneous crystallization. K4Cd3Ge4O13 demonstrates a distinct three-dimensional structural framework characterized by twisted [Ge4O13] and [Cd3O10] clusters, composed of [GeO4], [CdO4], [CdO5], and [CdO6] basic building units, respectively, which represents an unprecedented structural feature. The title compound undergoes a desirable congruent melting behavior at about 727 °C. Notably, K4Cd3Ge4O13 demonstrates a short UV cutoff edge at 261 nm, coupled with a wide energy gap of 4.4 eV, and maintains an extended IR transparency window at around 6.0 μm. More importantly, it demonstrates a strong second-harmonic generation activity comparable to that of KH2PO4 (KDP) at 1064 nm. Theoretical analyses further elucidate that the remarkable optical performances of K4Cd3Ge4O13 are predominantly attributed to the cooperative effects of Ge-O and Cd-O bond-based motifs. These desired characteristics underscore the potential of K4Cd3Ge4O13 as a good candidate material for mid-IR NLO applications.
Read full abstract