The structure of poly(dA).poly(dT) in aqueous solution has been studied by using 1H two-dimensional nuclear Overhauser effect (2D NOE) spectroscopy and relaxation rate measurements on the imino and nonexchangeable protons. The assignments of the 1H resonances are determined from the observed cross-relaxation patterns in the 2D NOE experiments. The cross-peak intensities together with the measured relaxation rates show that the purine and pyrimidine strands in poly(dA).poly(dT) are equivalent in aqueous solution. The results are consistent with a right-handed B-form helix where the sugars on both strands are in the C2'-endo/anti configuration. These observations are inconsistent with a proposed heteronomous structure for poly(dA).poly(dT) [Arnott, S., Chandrasekaran, R., Hall, I. H., & Puigjaner, L. C. (1983) Nucleic Acids Res. 11, 4141-4155]. The measured relaxation rates also show that poly(dA).poly(dT) has fast, large-amplitude local internal motions (+/- 20-25 degrees) in solution and that the amplitudes of the base and sugar motions are similar. The motion of the bases in poly(dA).poly(dT) is also similar to that previously reported for poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC) [Assa-Munt, N., Granot, J., Behling, R. W., & Kearns, D. R. (1984) Biochemistry 23, 944-955; Mirau, P. A., Behling, R. W., & Kearns, D. R. (1985) Biochemistry 24, 6200-6211].
Read full abstract