AbstractFast-moving synoptic-scale atmospheric disturbances produce large-scale near-inertial waves in the ocean mixed layer. In this paper, we analyze the distortion of such waves by smaller-scale barotropic eddies, with a focus on the evolution of the horizontal wavevector k under the effects of straining and refraction. The model is initialized with a horizontally uniform (k = 0) surface-confined near-inertial wave, which then evolves according to the phase-averaged model of Young and Ben Jelloul. A steady barotropic vortex dipole is first considered. Shear bands appear in the jet region as wave energy propagates downward and toward the anticyclone. When measured at a fixed location, both horizontal and vertical wavenumbers grow linearly with the time t elapsed since generation such that their ratio, the slope of wave bands, is time independent. Analogy with passive scalar dynamics suggests that straining should result in the exponential growth of |k|. Here instead, straining is ineffective, not only at the jet center, but also in its confluent and diffluent regions. Low modes rapidly escape below the anticyclonic core such that weakly dispersive high modes dominate in the surface layer. In the weakly dispersive limit, k = −t∇ζ(x, y, t)/2 provided that (i) the eddy vertical vorticity ζ evolves according to the barotropic quasigeostrophic equation and (ii) k = 0 initially. In steady flows, straining is ineffective because k is always perpendicular to the flow. In unsteady flows, straining modifies the vorticity gradient and hence k, and may account for significant wave–eddy energy transfers.
Read full abstract