AbstractLiquid distributors have an important influence on packed towers' hydrodynamics and mass transfer performances. This work has designed a narrow‐trough liquid distributor with stepped baffle plates to regulate liquid flow. The liquid mainstream is diverted layer by stepped baffles to realize the uniform distribution of liquid. The relationship between liquid flow and the baffle plates arrangement is studied by computational fluid dynamics (CFD) simulation. Furthermore, we put forward a CFD‐based structural optimization scheme to arrange baffle plates in an arc shape, which leads to a uniform and stable flow of each distribution orifice in the range of liquid spray density of 5–120 m3·(m2·h)−1. The simulation results agree with experiments, which proved that the novel liquid distributor has excellent performance. Compared with the traditional trough liquid distributor, the novel liquid distributor can provide more liquid drip points, more gas‐phase channels, higher operating flexibility, and take up less space.
Read full abstract