We investigated a bilayer catalyst system consisting of polycrystalline Ni and W films for growing mono-layer graphene over large areas. Highly uniform graphene was grown on Ni/W bilayer film with 100% coverage. The graphene grown on Ni/W bilayer film and transferred onto an insulating substrate exhibited average hole and electron mobilities of 727 and 340 cm2V−1s−1, respectively. A probable growth mechanism is proposed based on X-ray diffractometry and transmission electron microscopy, which suggests that the reaction between diffused carbon and tungsten atoms results in formation of tungsten carbides. This reaction allows the control of carbon precipitation and prevents the growth of non-uniform multilayer graphene on the Ni surface; this has not been straightforwardly achieved before. These results could be of importance in better understanding mono-layer graphene growth, and suggest a facile fabrication route for electronic applications.
Read full abstract