BackgroundConventional balance and gait assessments for fall risk screening are often conducted under unperturbed conditions. However, older adults can allocate their attention to motor tasks (balance or walking) without revealing performance deficiencies, posing a challenge in identifying those with compromised gait and balance. Research questionsDo community-dwelling older adults exhibit greater changes in cognitive and/or walking performance under balance-challenging conditions compared to typical dual-task walking conditions? MethodsTwenty-nine healthy, community-dwelling older adults performed four cognitive tasks (visual and auditory Stroop tasks, Clock task, and Paced Auditory Serial Addition Test) while walking with and without lateral treadmill sways (Perturbed vs. Unperturbed) and during standing. We calculated dual-task costs (DTC) and walking perturbation effects (WPE) as the percentage of change in cognitive and walking performance between dual and single-task conditions and between Perturbed and Unperturbed conditions, respectively. ResultsOlder adults exhibited similar DTC and WPE on cognitive task performance. However, in walking performance, they demonstrated significantly greater WPE than DTC across all gait and stability measures (p < 0.01), including the mean and variability of stride and margins of stability (MOS) measures, the variability of trunk movement and lower-limb joint angles, and the local stability measures. Older adults took shorter but wider steps, exhibited shorter MOSAP but greater MOSML, and experienced increased movement variability and walking instability to a greater extent than during dual-task walking. Overall, changes in variability and stability measures were more pronounced than those in mean gait measures. SignificanceIntroducing destabilizing perturbations to increase the task demands of balance and gait assessments is a more effective method to challenge older adults compared to simply adding a concurrent cognitive task. Fall screening assessments for community-dwelling older adults should incorporate balance-challenging conditions, such as introducing gait perturbations.
Read full abstract