Mercury-contaminated fish are a serious problem in the Great Lakes basin, because mercury is a potent neurotoxin that poses a danger to both humans and wildlife. Lake Superior lake trout and walleye have the highest mercury concentrations of the five Great Lakes. Because the atmosphere is the major source of mercury to the Great Lakes, information on the over-water mercury concentration is essential to model the mercury biogeochemical cycle. For the first time in the peer-reviewed literature, this paper presents total gaseous mercury (TGM) measurements made over Lake Superior and Lake Michigan. The Lake Superior aircraft measurements were made at an altitude of 300 m, and the Lake Michigan aircraft measurements at a variable altitude of 30–300 m. The over-water Lake Superior TGM of 1.02 ± 0.34 ng/m3 is much lower than the TGM from nine stations in the Canadian Atmospheric Mercury Measurement Network (CAMNet) and six stations in the Atmospheric Mercury Network (AMNet). The land-based TGM concentrations average range from 1.25 to 1.75 ng/m3 which are in good agreement with current global average values of 1.3–1.6 ng/m3. The over-water Lake Michigan TGM is 1.65 ± 0.61 ng/m3. We also present Lake Superior over-water measurements of volatile organic compounds (VOC), ozone (O3), nitrogen oxide (NOy), and particulate matter. Elemental carbon (EC) is a tracer for mercury because mercury is released during the combustion of coal. EC is significantly correlated with TGM over both Lake Superior and Lake Michigan. TGM over Lake Michigan is also significantly correlated with organic carbon, sulfate, nitrate and ammonium.
Read full abstract