We consider the asymptotic stability and attractor bifurcation of the extended Fisher-Kolmogorov equation on the one-dimensional domain <svg style="vertical-align:-2.21957pt;width:37.924999px;" id="M1" height="16.200001" version="1.1" viewBox="0 0 37.924999 16.200001" width="37.924999" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.625,12.687)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z" /></g><g transform="matrix(.017,-0,0,-.017,6.507,12.687)"><path id="x30" d="M241 635q53 0 94 -28.5t63.5 -76t33.5 -102.5t11 -116q0 -58 -11 -112.5t-34 -103.5t-63.5 -78.5t-94.5 -29.5t-95 28t-64.5 75t-34.5 102.5t-11 118.5q0 58 11.5 112.5t34.5 103t64.5 78t95.5 29.5zM238 602q-32 0 -55.5 -25t-35.5 -68t-17.5 -91t-5.5 -105
q0 -76 10 -138.5t37 -107.5t69 -45q32 0 55.5 25t35.5 68.5t17.5 91.5t5.5 105t-5.5 105.5t-18 92t-36 68t-56.5 24.5z" /></g><g transform="matrix(.017,-0,0,-.017,14.666,12.687)"><path id="x2C" d="M95 130q31 0 61 -30t30 -78q0 -53 -38 -87.5t-93 -51.5l-11 29q77 31 77 85q0 26 -17.5 43t-44.5 24q-4 0 -8.5 6.5t-4.5 17.5q0 18 15 30t34 12z" /></g><g transform="matrix(.017,-0,0,-.017,21.363,12.687)"><path id="x1D70B" d="M574 449q-23 -58 -38 -79q-16 -4 -79 -4q-27 -100 -46 -219q-14 -87 7 -87t74 36l13 -27q-74 -81 -139 -81q-48 0 -48 62q0 22 8 59l60 258l-154 4q-21 -103 -54.5 -209t-64.5 -151q-38 -23 -83 -23l-7 15q46 36 94 152.5t64 216.5q-81 0 -138 -54l-18 23q22 27 39.5 43
t61.5 33.5t100 17.5q43 0 131.5 -2.5t129.5 -2.5q23 0 33.5 5t24.5 25z" /></g><g transform="matrix(.017,-0,0,-.017,31.41,12.687)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z" /></g> </svg> with Dirichlet or periodic boundary conditions. The novelty of this paper is that, based on a new method called attractor bifurcation, we investigate the existence of an attractor bifurcated from the trivial solution and give an explicit description of the bifurcated attractor. Moreover, the stability of the bifurcated branches is discussed.
Read full abstract