The secondary organic aerosol (SOA) yield of toluene photooxidation was reported to substantially higher than that of trimethylbenzene due to the effect of the number of methyl substituents. However, the intrinsic mechanism for this disparity is not clear enough. In this study, a highly-sensitive thermal-desorption photoinduced associative ionization mass spectrometer (TD-PAI-MS) was used to real-time characterize the molecular composition and its evolution of the SOA generated from the photooxidation of toluene and 1,2,3-trimethylbenzene (1,2,3-TMB) in a smog chamber. In the new particle formation (NPF) stage, toluene generated more variety of nucleation precursors, such as benzaldehyde (MW 106) and benzoic acid (MW 122), resulting in a much higher nucleation rate and SOA number concentration. In the SOA growth/aging stage, the key SOA components of toluene were mainly dialdehydes, e.g., 2-oxopropanedial (MW 86) and 4-oxopent-2-enedial (MW 112), which played an important role in the formation of highly oxidized species (HOS) through oligomerization or cyclization reactions. In contrast, due to the presence of more methyl groups, 1,2,3-TMB was inclined to produce ketones, e.g., 2,3-butanedione (MW 86) and 3-methyl-4-oxopent-2-enal (MW 112), which would be cleaved into high-volatility low molecular compounds, e.g., acetic acid, through fragmentation. Taken together, relative to 1,2,3-TMB, the higher nucleation rate during NPF and the significant oligomerization/functionalization process during SOA growth are thought to be the major reasons resulting in the higher SOA yield of toluene. This work provides a reference for the insight into the different SOA yields of monocyclic aromatic hydrocarbons (MAHs) through further revealing the SOA formation mechanism during toluene and 1,2,3-TMB photooxidation.
Read full abstract