Home-made graphene oxide (GO) with a high surface area was functionalized by polydopamine (PDA) and was labeled PDA-GO, while GO without PDA was labeled as GO. With different compositions of metals (Pt and/or Pd), the electrodeposition of the metals onto the prepared GO and PDA-GO supports was prepared for the anode electrocatalyst. The electrocatalytic activities of the electrocatalysts (xPtPd/GO and xPtPd/PDA-GO, where x = 1–5) were studied in the oxidation of alcohols (e.g., methanol and ethanol). Morphologies obtained from transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) images showed that the as-prepared GO and PDA-GO supports can accommodate electrodeposited metals loaded on the topmost layer of the support surfaces, although the size of nanoparticles is somewhat different. The electrochemical results indicated that the xPtPd/PDA-GO catalysts offered outstanding oxidation efficiencies. The prepared 5PtPd/PDA-GO catalyst provided enhanced activity and long-time stability in the oxidation reactions. The GO surface modified by the polymer and the other electrodeposited metal catalysts provided a larger number of available active sites, as the PDA offered a greater electric connection between the metal catalysts and the GO support during alcohol oxidation.
Read full abstract