One of the weakness in backpropagation Artificial neural network(ANN) is being stuck in local minima. Learning rate parameter is an important parameter in order to determine how fast the ANN Learning. This research is conducted to determine a method of finding the value of learning rate parameter using a genetic algorithm when neural network learning stops and the error value is not reached the stopping criteria or has not reached the convergence. Genetic algorithm is used to determine the value of learning rate used is based on the calculation of the fitness function with the input of the ANN weights, gradient error, and bias. The calculation of the fitness function will produce an error value of each learning rate which represents each candidate solutions or individual genetic algorithms. Each individual is determined by sum of squared error value. One with the smallest SSE is the best individual. The value of learning rate has chosen will be used to continue learning so that it can lower the value of the error or speed up the learning towards convergence.
 
 
 
 
 The final result of this study is to provide a new solution to resolve the problem in the backpropagation learning that often have problems in determining the learning parameters. These results indicate that the method of genetic algorithms can provide a solution for backpropagation learning in order to decrease the value of SSE when learning of ANN has been static in large error conditions, or stuck in local minima
Read full abstract