In this investigation, the spatiotemporal distribution of cyanobacteria and their relationships with variations in water chemistry (physico-chemical parameters and heavy metal) of Sutlej River, Punjab (India) has been analyzed by employing multivariate statistical methods. Sutlej River exhibits a rich array of cyanobacterial diversity, comprising 28 species across 15 genera, distributed among 11 families and spanning 5 orders within the class Cyanophyceae. In terms of relative abundance, Microcystis aeruginosa (17.47%) was documented as the most abundant taxa followed by Microcystis robusta (16.55%), Merismopedia punctata (11.03%), Arthrospira fusiformis (6.67%) and Pseudanabaena galeata (3.68%). Significant variations were observed among sampling sites in most of the physico-chemical parameters. Principal Component Analysis delineated sampling sites into two discernible groups according to variations in water chemistry. River Pollution Index (RPI) showed that river water is under the unpolluted (RPI 1.5) to negligibly polluted category in the upstream sites, while moderately polluted (RPI 5.5) in the downstream sites. Heavy metal Pollution Index (HPI) revealed consistent heavy metal contamination at sites RWS7 and RWS8 across all seasons. Conversely, site RWS1 consistently exhibited lower HPI values throughout the three studied seasons. Further, Canonical Correspondence Analysis identified that pH, TDS, TA, NO3, Na, and NH4 are the key physicochemical parameters which affect the spatiotemporal distribution of cyanobacteria in the studied river system. Overall, this study will offer significant information for hydrologists, ecologists, and taxonomists to develop future holistic strategies for further monitoring of the Sutlej River and other similar habitats.
Read full abstract