Nanoplastics (NPs) have emerged as global environmental pollutants with concerning implications for sustainable agriculture. Understanding the underlying mechanisms of NPs toxicity and devising strategies to mitigate their impact is crucial for crop growth and development. Here, we investigated the nanoparticles of zinc oxide (nZnO) to mitigate the adverse effects of 80 nm NPs on fragrant rice. Our results showed that optimized nZnO (25 mg L−1) concentration rescued root length and structural deficits by improving oxidative stress response, antioxidant defense mechanism and balanced nutrient levels, compared to seedlings subjected only to NPs stress (50 mg L−1). Consequently, microscopy observations, Zeta potential and Fourier transform infrared (FTIR) results revealed that NPs were mainly accumulated on the initiation joints of secondary roots and between cortical cells that blocks the nutrients uptake, while the supplementation of nZnO led to the formation of aggregates with NPs, which effectively impedes the uptake of NPs by the roots of fragrant rice. Transcriptomic analysis identified a total of 3973, 3513 and 3380 differentially expressed genes (DEGs) in response to NPs, nZnO and NPs+nZnO, respectively, compared to the control. Moreover, DEGs were significantly enriched in multiple pathways including biosynthesis of secondary metabolite, phenylpropanoid biosynthesis, amino sugar and nucleotide sugar metabolism, carotenoid biosynthesis, plant-pathogen interactions, MAPK signaling pathway, starch and sucrose metabolism, and plant hormone signal transduction. These pathways could play a significant role in alleviating NPs toxicity and restoring fragrant rice roots. Furthermore, metabolomic analysis demonstrated that nZnO application restored 2-acetyl-1-pyrroline (2-AP) pathways genes expression, enzymatic activities, and the content of essential precursors related to 2-AP biosynthesis under NPs toxicity, which ultimately led to the restoration of 2-AP content in the leaves. In conclusion, this study shows that optimized nZnO application effectively alleviates NPs toxic effects and restores both root structure and aroma production in fragrant rice leaves. This research offers a sustainable and practical strategy to enhance crop production under NPs toxicity while emphasizing the pivotal role of essential micronutrient nanomaterials in agriculture.
Read full abstract