ABSTRACTSoil aquifer treatment (SAT), applied after activated sludge treatment (AST), has been widely used for wastewater reclamation. AST and SAT show potential for removing micropollutants, including pharmaceuticals and personal care products (PPCPs). However, the role of sequential combination of AST and SAT on the biodegradation of PPCPs was not clear in previous studies. In this study, the removal characteristics of PPCPs in AST and SAT were evaluated to assess the legitimacy of sequential combination of AST and SAT. SAT showed effective removals of antibiotics (> 80%), including fluoroquinolones and macrolides by sorption, but poor removals of amide pharmaceuticals (i.e. carbamazepine and crotamiton) were observed in both AST and SAT. Additionally, biodegradation contributed to the effective removal of carboxylic PPCPs (i.e. ketoprofen and gemfibrozil) in both ASTs and SAT, but effective biodegradation of halogenated acid and polycyclic aromatic compounds (i.e. clofibric acid and naproxen) was observed only in SAT (82.1% and 81.8%, respectively). Furthermore, the microbial substrate metabolic patterns showed that amino acids, amines, and polymers were biodegradable in SAT, which was fit for the biodegradation characteristics of PPCPs in SAT. For microbial communities, Proteobacteria were dominant in AST and SAT, but Acidobacteria and Actinobacteria were more abundant in SAT than AST, which could contribute to the effective removals of halogenated acid in SAT. Considering PPCP biodegradation and substrate metabolism, SAT displays a wider range on the biodegradation than AST. Therefore, we conclude that these two processes can complement each other when used for controlling PPCPs.
Read full abstract