Construction of robust solid electrolyte interphases (SEIs) has proved effective in mitigating dendrite growth and side reactions of zinc (Zn) anodes in aqueous electrolytes. Fluorinated SEIs, in particular, have garnered significant attention due to their exceptional electrochemical stability and high Zn2+ conductivity. However, the formation of such SEIs typically relies on the use of fluorine (F)-containing precursors, which inadvertently raise environmental and biological concerns because they show high resistance to degradation in natural environments. Herein, we develop an F-free organic/inorganic hybrid SEI for aqueous Zn batteries using a low-cost N-acetyl-D-glucosamine (NAG) electrolyte additive. The NAG additive not only modulates the solvation structure of Zn2+ but also preferentially adsorbs on the Zn anode to promote the in situ formation of a robust organic (Zn chelates)/inorganic (ZnS and ZnCO3) hybrid SEI layer, thereby enhancing Zn2+ de-solvation kinetics and Zn plating/stripping reversibility. Consequently, the Zn anode exhibits a long-term cycling over 6500h at 0.5mAcm‒2, a high average Coulombic efficiency of 99.6% at 1mAcm‒2, and greatly extended cycling stability in full cells (up to 2000 cycles). Our electrolyte design paves a promising avenue toward practical Zn batteries that combine performance, cost-effectiveness, and eco-friendliness.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
492 Articles
Published in last 50 years
Articles published on Aqueous Zinc Batteries
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
476 Search results
Sort by Recency