Antimicrobial peptides (AMPs), including beta-defensin from fish, are a crucial class of peptide medicines. The focus of the current study is the molecular and functional attributes of CmDef, a 63-amino acid beta-defensin AMP from Malabar trevally, Carangoides malabaricus. This peptide demonstrated typical characteristics of AMPs, including hydrophobicity, amphipathic nature, and +2.8 net charge. The CmDef was recombinantly expressed and the recombinant peptide, rCmDef displayed a strong antimicrobial activity against bacterial fish pathogens with an MIC of 8µM for V. proteolyticus and 32µM for A. hydrophila. The E. tarda and V. harveyi showed an inhibition of 94% and 54%, respectively, at 32µM concentration. No activity was observed against V. fluvialis and V. alginolyticus. The rCmDef has a multimode of action that exerts an antibacterial effect by membrane depolarization followed by membrane permeabilization and ROS production. rCmDef also exhibited anti-cancer activities in silico without causing hemolysis. The peptide demonstrated stability under various conditions, including different pH levels, temperatures, salts, and metal ions (KCl and CaCl2), and remained stable in the presence of proteases such as trypsin and proteinase K at concentrations up to 0.2µg/100µl. The strong antibacterial efficacy and non-cytotoxic nature suggest that rCmDef is a single-edged sword that can contribute significantly to aquaculture disease management.
Read full abstract