Single-molecule localization microscopy (SMLM) allows super-resolution imaging, mapping, counting, and sizing of biological nanostructures such as cell organelles and extracellular vesicles (EVs), but sizing structures smaller than ∼100 nm can be inaccurate due to single-molecule localization error caused by distortion of the point spread function and limited photon number. Here we demonstrate a method to correct localization error when sizing vesicles and other spherical nanoparticles with SMLM and compare sizing results using two vesicle labeling schemes. We use mean approximation theory to derive a simple equation using full width at half-maximum (FWHM) for correcting particle sizes measured by two-dimensional SMLM, validate the method by sizing streptavidin-coated polystyrene nanobeads with the SMLM technique dSTORM with and without error correction, using transmission electron microscopy (TEM) for comparison, and then apply the method to sizing small seminal EVs. Nanobead sizes measured by dSTORM became increasingly less accurate (larger than TEM values) for beads smaller than 50 nm. The error-correction method reduced the size difference versus TEM from 15% without error correction to 7% with error correction for 40 nm beads, from 44% to 9% for 30 nm beads, and from 66% to 15% for 20 nm beads. Seminal EVs were labeled with a lipophilic membrane dye (MemBright 700) and with an Alexa Fluor 488-anti-CD63 antibody conjugate, and were sized separately using both dyes by dSTORM. Error-corrected exosome diameters were smaller than uncorrected values: 72 nm vs 79 nm mean diameter with membrane dyes; 84 nm vs 97 nm with the antibody-conjugated dyes. The mean error-corrected diameter was 12 nm smaller when using the membrane dye than when using the antibody-conjugated dye likely due to the large size of the antibody. Thus, both the error-correction method and the compact membrane labeling scheme reduce overestimation of vesicle size by SMLM. This error-correction method has a low computational cost as it does not require correction of individual blinking events, and it is compatible with all SMLM techniques (e.g., PALM, STORM, and DNA-PAINT).
Read full abstract