Reconfigurable intelligent surface (RIS)-aided symbiotic active/passive transmission is a promising communication paradigm, which is able to improve the propagation environment while transmitting additional information. In this paper, a novel scheme, termed RIS-aided number modulation (RIS-NM), is proposed for symbiotic active/passive communications. In RIS-NM, the RIS elements are divided into in-phase (I-) and quadrature (Q-) subsets depending on their phase shift configurations, and the number of elements in the I-subset (or Q-subset, equivalently) is used to convey the RIS’s private information. A low-complexity yet near-optimal detector is designed for RIS-NM by shrinking the search space of constellation points. We then investigate a special case of RIS-NM, termed RIS-aided number shift keying (RIS-NSK), in which the radio-frequency source transmits unmodulated carrier signals. Statistic channel state information (CSI)-based maximum-likelihood (ML) detection is developed for RIS-NSK. We analyze the bit error rate (BER) performance of RIS-NM/NSK over Rician fading channels. BER upper bounds are derived in closed-form for RIS-NM by assuming instantaneous CSI-based ML detection, while an approximate BER expression is obtained for RIS-NSK by assuming statistic CSI-based ML detection. Furthermore, we extend RIS-NM to multiple-input multiple-output scenarios. Our simulation results in terms of BER corroborate the performance analysis and the superiority of RIS-NM over the state-of-the-art RIS-aided symbiotic active/passive transmission scheme.
Read full abstract