Experimental works have shown that doping ZnO nanosheets by the Al atom meaningfully increases their sensitivity toward HCHO gas. Here, we applied density functional theory calculations to study the Al-doping effect on the sensitivity of a ZnO nanosheet to HCHO gas, explaining the experimental results. We found that the pristine ZnO nanosheet weakly interacts with the HCHO with adsorption energy (Ead) of −9.3 kcal/mol, and the sensing response (S) value of 2.2 at 623 K. After the Al-doping process, the Ead and S values increase to −40.7 kcal/mol and 83.9, respectively, indicating an excellent agreement with the experimental results. We showed a relation between the HOMO-LUMO gap and the S value, confirming with the experimental results. Also, the proposed Al-doped ZnO nanosheet shows a good selectivity to HCHO gas at the presence of H2, NH3, C2H5OH, CO, and CH4 gases. A short recovery time of 18 s is predicted for Al–ZnO-based sensor which is comparable with the experimental value of 26 s. Finally, we conclude that the Al-doping makes the ZnO nanosheet a promising HCHO gas sensor with a high sensitivity, an excellent selectivity, and short recovery time.
Read full abstract