Because the atomic force microscope (AFM) allows molecular resolution imaging of hydrated specimens, it provides a unique window to the microscopic biological world. A high signal-to-noise ratio in AFM images sets them apart from the images obtained from other techniques: One does not need extensive image analyses often required by other techniques to obtain high-resolution information. AFM can provide molecular details on crystalline as well as amorphous materials. However, it is often limited in providing identity of the imaged structures, especially in a complex system such as a cellular membrane. AFM's application for biological imaging will rely on an unambiguous identification of imaged structures. For mixed macromolecules, it may be essential to make critical comparisons of the same structural features imaged with AFM and other techniques such as light fluorescence and confocal microscopies, electron microscopy and X-ray diffraction, and biochemical, immunologic, and pharmacologic techniques and electrophysiologic recordings. Significantly, the simple design of AFM allows it to be integrated with other techniques for simultaneous multimodal imaging. Recent combined multimodal imaging include light fluorescence, confocal, and near-field optical imaging as well as electrophysiologic recordings. Preliminary studies from such multimodal imaging include 1) an independent identification of macromolecules in a complex specimen using appropriately labeled markers such as fluorescent-dye labeled antibodies or dark-field microscopy; 2) imaging real-time reorganization of surface features using laser confocal and AFM; 3) a direct correlation of structural features and ion transfer via pores in a membrane; and 4) macromolecular complexes such as receptor-ligand and antigen-antibody. These features of a multimodal imaging system will provide new and significant avenues for a direct real-time structure-function correlation studies of biological macromolecules. © 1997 John Wiley & Sons, Inc. Int J Imaging Syst Technol, 8, 293–300, 1997
Read full abstract