Lead halide perovskites have garnered attention as promising electrochemiluminescence (ECL) emitters owing to their superior photophysical characteristics. However, their poor water stability severely restricts their application in aqueous media for ECL. In this study, inorganic perovskite CsPbBr3 was assembled in situ in the imine-linked covalent-organic framework (COF-LZU1) as a novel ECL emitter. The expansive surface area and robust hydrophobic architecture of COF-LZU1 not only improved the water stability of CsPbBr3 but also guaranteed its exceptional ECL performance. The novel composite nanoluminescent material was coated onto an indium tin oxide (ITO) electrode via spin-coating and calcination processes to serve as an electrochemiluminescence (ECL) platform. A sensor was developed by combining a DNA hydrogel target-induced release system with a platform using ascorbic acid (AA) as a coreactant and T-2 toxin as the target analyte model. This method achieved a detection limit as low as 3.56 fg·mL-1 and was successfully applied to the analysis of the T-2 toxin content in corn samples. This study offers a novel path for the advancement of perovskite-based ECL emitters and their utilization in aqueous environments within the ECL field.
Read full abstract