Mitochondrial dysfunction and myocardial remodeling have been reported to be the main underlying molecular mechanisms of doxorubicin-induced cardiotoxicity. SIRT6 is anicotinamide adenine dinucleotide-dependent enzyme that plays a vital role in cardiac protection against various stresses. Moreover, previous studies have demonstrated that FSTL1 could alleviate doxorubicin-induced cardiotoxicity by inhibiting autophagy. The present study investigated the probable mechanisms of FSTL1 on doxorubicin-induced cardiotoxicity in vivo and in vitro. We confirmed that FSTL1 exerted a pivotal protective role on cardiac tissue in vivo and on doxorubicin-induced cell injury in vitro. Furthermore, FSTL1 can alleviate doxorubicin-induced mitochondrial dysfunction by inhibiting autophagy and apoptosis. Further studies demonstrated that FSTL1 can activate SIRT6 signaling by restoring the SIRT6 protein expression in doxorubicin-induced myocardial injury. SIRT6 activation elevated the protein expression of Nrf2 in doxorubicin-induced H9C2 injury. Treatment with the Nrf2 inhibitor ML385 partially antagonized the cardioprotective role of SIRT6 on doxorubicin-induced autophagy or apoptosis. These results suggested that the protective mechanism of FSTL1 on doxorubicin-induced cardiotoxicity may be related with the inhibition of autophagy and apoptosis, partly through the activation of SIRT6/Nrf2.
Read full abstract