Abstract We present tonalli, a spectroscopic analysis python code that efficiently predicts effective temperature, stellar surface gravity, metallicity, α-element abundance, and rotational and radial velocities for stars with effective temperatures between 3200 and 6250 K, observed with the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2). tonalli implements an asexual genetic algorithm to optimise the finding of the best comparison between a target spectrum and the continuum-normalised synthetic spectra library from the Model Atmospheres with a Radiative and Convective Scheme (MARCS), which is interpolated in each generation. Using simulated observed spectra and the APOGEE-2 solar spectrum of Vesta, we study the performance, limitations, accuracy and precision of our tool. Finally, a Monte Carlo realisation was implemented to estimate the uncertainties of each derived stellar parameter. The ad hoc continuum-normalised library is publicly available on Zenodo (DOI 10.5281/zenodo.12736546).
Read full abstract