The biosynthesis and accumulation of secondary metabolites are critical important to quality formation of medicinal plants, which are usually give way to primary processes and growth. Here, methionine sulfoximine (MSO) was used to inhibit the nitrogen assimilation in callus of Cyclocarya paliurus. The newly assimilated nitrogen characterized by 15N atom percentage excess, and the levels of amino acid and protein were reduced. The other primary processes such as carbohydrate metabolism and lipid metabolism were also repressed. In addition, the expression of the growth-related target of rapamycin (TOR) signaling was repressed, indicating nitrogen assimilation inhibition led to a systematic down-regulated primary metabolisms and resulted in a disruption of growth. In contrast, the biosynthesis of flavonoids and triterpenoids, antioxidase system, and the SnRK2-mediated abscisic acid (ABA) and jasmonic acid (JA) signaling were induced, which can improve plant stress resistance and defense. Nitrogen assimilation inhibition led to the carbon metabolic flux redirection from primary processes to secondary pathways, and facilitated the biosynthesis of flavonoids and triterpenoids in calluses of C. paliurus. Our results provide a comprehensive understanding of metabolic flux redirection between primary and secondary metabolic pathways and a potential means to improve the quality of medicinal plants.
Read full abstract