In this study, we elucidated the chemical and biological inactivation mechanisms of peroxydisulfate (PDS) activated by UVA and Fe2+ (UVA/Fe2+/PDS) in wild-type antibiotic-resistant bacteria (ARB) isolated from a river in Inner Mongolia. Among the screened wild-type ARB, the relative abundance of unidentified Enterobacteriaceae, Stenotrophomonas, and Ralstonia was high. A ratio of 1:1 for Fe2+ and PDS under 18W·m-2 UVA radiation (sunny days) completely inactivated the environmental ARB isolates. In the macro view of the inactivation process, Fe2+ first activates PDS rapidly, and later the UVA energy accumulated starts to activate PDS; HO• then becomes the main active species at a rate-limiting step. From a micro perspective, damage to the cell wall, intracellular proteins, inactivation of antioxidant enzymes, and genetic material degradation are the inactivation series of events by UVA/Fe2+/PDS, contributing to the 97.8% inactivation of ARB at the initial stage. No regrowth of sublethal ARBs was observed. The transfer of tetracycline resistance genes from ARB to lab E. coli was evaluated by horizontal gene transfer (HGT), in which no HGT occurred when ARB was eliminated by UVA/Fe2+/PDS. Moreover, the sulfate and iron residuals in the effluents of treated water were lower than the drinking water standards. In summary, PDS, UVA, and Fe2+ activation effectively inactivated wild ARB with a low concentration of reagents, while inhibiting their regrowth and spread of resistance due to the contribution of intracellular inactivation pathways. Environmental ImplicationAntibiotic resistance bacteria (ARB) were isolated from the feces and river of Inner Mongolian Plateau, which indicated that the grassland system and surface water had been polluted by the antibiotic resistance. In our previous survey, most people living in remote pasture lands, are using surface water for drinking.Hence, we applied UVA/Fe2+/PDS to control the antibiotic resistance, which has great oxidative ability and lower input requires. ARB and antibiotic resistance genes (ARGs) were well eliminated, and the chemicals of effluent were under the drinking water requires. UVA/Fe2+/PDS is an environmental-friendly disinfection method, which effectively protect the ecological and human health.
Read full abstract