Aim. Oxidative stress is a consequence of the increased production of free radicals that is caused by the disturbance in the balance of oxidation-reduction activity. Salvianolic acid B is a polyphenol compound, derived from the plant Salvia miltiorrhiza Bunge, which showed significant antioxidant properties. The aim of this study is the investigation of genotoxic potential of salvianolic acid B and evaluation of its antigenotoxic activity against the DNA damage induced by hydrogen peroxide in peripheral blood leukocytes in vitro, using the alkaline Comet assay. Materials and Methods. The evaluation of the ability of various concentrations of salvianolic acid B (12.5μM, 25μM and 50 μM) to reduce the number of cells with DNA damage caused by hydrogen peroxide as an oxidant was performed under two experimental protocols: pretreatment and cotreatment, in order to determine antigenotoxicity on preventive and intervention levels. Results. Results indicate that the salvianolic acid B did not exhibit a genotoxic effect after 30 minutes of incubation, in the tested concentrations. In the pretreatment, a concentration of 50 μM showed a significant decrease of the hydrogen peroxide induced DNA damage. Salvianolic acid B was more effective in reducing DNA damage in cotreatment, where concentrations of 25 μM and 50 μM demonstrated a significant abrogation of DNA damage. Protective effect of salvianolic acid B was dependent on the concentration. Conclusions. The results showed that salvianolic acid B has pronounced antigenotoxic effect on the intervention level, which makes it a potential agent in treatment of diseases in which oxidative DNA damage plays an important role.
Read full abstract