Antiferromagnets attract much interest because of their potential for spintronic applications and open fundamental physics questions, but especially noncollinear antiferromagnets remain relatively unexplored. Here, we formulate the thermal and coherent pumping of spins in noncollinear antiferromagnets|normal metal bilayers. We find that the spin current polarization is a vector with components along both the Néel vector and net magnetic moment. The spin mixing conductance for the coherent spin pumping is a tensor with elements depending on the degree of noncollinearity and interface spin configuration. We explain the controversial sign problem of the antiferromagnetic spin Seebeck effect by interface effects and suggest that interface engineering may enhance the spin pumping efficiency.
Read full abstract