Tannic acid (TA) is the primary bioactive component in the gallnut (Galla chinensis) and has exhibited the anticancer effects. However, the mechanism of its anti-cancer activity in nasopharyngeal carcinoma (NPC) remains unclear. This research aims to explore the underlying mechanism of TA in the treatment of nasopharyngeal cancer using network pharmacology, molecular docking and experimental validation. Firstly, the targets of TA and NPC were predicted and collected through databases, and the intersection targets were identified. Subsequently, protein-protein interaction (PPI) network analysis, Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes Genomes (KEGG) pathway enrichment analysis, molecular docking and molecular dynamics (MD) simulation were conducted to uncover the potential mechanisms of TA in treatment of NPC. Finally, in vitro experiments were utilized to verify the mechanism of TA with anticancer activity in NPC. The results of network pharmacology revealed 42 intersection targets between NPC-related targets and TA-related targets. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling was identified as the main target pathway of TA against NPC. Additionally, molecular docking and MD simulation confirmed the closely binding affinities of TA with AKT1. Furthermore, the results of in vitro experiments demonstrated that TA exerts anticancer activity against NPC by targeting the PI3K/AKT signaling pathway, leading to the suppression of cell proliferation. TA is a promising therapeutic candidate for NPC through PI3K/AKT signaling pathway. These results provide insights into the clinical application of TA, particularly when considered in combination with other therapeutic modalities.
Read full abstract